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Outline

@ The QCD phase diagram: outstanding issues from lattice

© Equation of state at finite g

© Critical-end point from Lattice

@ Lattice QCD Inputs for experiments
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Major Themes from Lattice
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Major Themes from Lattice

@ In view of the RHIC Beam
Energy Scan-1l in 2019-20
it is important to have
control over the Equation
of State for g/ T < 3.
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@ The QCD phase diagram: outstanding issues from lattice
© Equation of state at finite g
© Critical-end point from Lattice

@ Lattice QCD Inputs for experiments
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Basic methodology

@ Traditional Monte-Carlo methods at finite ;5 suffer from sign
problem.
@ One of the most practical methods to circumvent it
Taylor expansion of physical observables around ;o = 0 in powers of
w/ T
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How to introduce constraints in EoS

@ In most central heavy-ion experiments typically:

ns =20, )
ng __ np _
ne = mptnm = 0.4.

@ For lower /s collisions: Need to understand baryon stopping!
@ Imposes non-trivial constraints on the variation of 115 and /..
@ Possible to vary them by only varying 1.5 through

3 5
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@ Central values of P,, Ps already deviate from Hadron Resonance gas model
at T > 145 MeV — need to reduce the errors on Py better.

@ Py has characteristic structure at T > T. — remnant of the chiral
symmetry due to the light quarks. Effects of Us(1) anomaly?

@ Essentially non-perturbative — cannot be predicted within Hard Thermal

Loop perturbation theory.
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EoS in the constrained case

@ The EoS for the constrained case is well under control for pug/ T ~ 2.5 with
X6-

@ Full parametric dependence for Nig on T available in arxiv: 1701.04325.

@ Expanding to g/ T = 3, need to calculate xs!
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Summary for the EoS

@ Continuum estimates from two different fermion discretizations and different
methods of analysis agree for ug/T < 2.
[Bielefeld-BNL-CCNU collaboration, 1701.04325, Borsanyi et. al, 1606.07494] .

@ Steeper EoS for RHIC energies compared to LHC energy.
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Baryon number density

@ ¢ contribution is 30-times larger than in

W pressure.
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Curvature of freeze-out line

@ The lines of constant f = € or p is characterized as:

2 4
Tins) = 7o (15 (3)" = (32)')

@ For 145 < T < 165 MeV: 0.0064 < x5 < 0.0101 , 0.0087 < k$ < 0.012.

@ Consistent with the curvature of the chiral 'crossover’ transition curve
0.0066(7) to 0.013(3). [ariv:1011.3130, 1507.03571, 1507.07510, 1508.07599]

@ For g/ T < 2 the contribution from x4 to T¢(ug) within errors of k.
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Curvature of freeze-out line: Final summary

@ Different LCP's agree within 2 MeV for ug/ T < 2 for 3 initial choices of Tp.

@ For lines P = , the entropy density changes by 15% — better
description of LCP for viscous medium formed in heavy-ion collisions.

@ STAR results give a steeper curvature.

165 ’
HM @ Agreement with the recent ALICE
+ results. .

S e @ Consistent with phenomenological
T 145 (@ Bepattini ot al. —+~ models if a higher T ~ 165 is assumed

1401 constant P s .

I om However lattice studies show explicitly

rosepertnee Ve MV that the HRG breaks down!
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@ The QCD phase diagram: outstanding issues from lattice
© Equation of state at finite ug
© Critical-end point from Lattice

@ Lattice QCD Inputs for experiments
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Critical-end point search from Lattice

@ The Taylor series for x5 (15) should diverge at the critical point. On
finite lattice Xf peaks, ratios of Taylor coefficients equal, indep. of
volume.

@ The radius of convergence will give the location of the critical point.

B
X2n
~B

@ Definition: rn, = ,\/2n(2n —1)

Xani2 |
e Strictly defined for n — oco. How large n could be on a finite lattice?
e Signal to noise ratio deteriorates for higher order \ 2.
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Critical-end point search from Lattice

@ Different estimates from the ratios of fluctuations set a current bound for
CEP to be g/ T > 2 for 135 < T < 160 MeV
@ The \Z extracted by analytic continuation using imaginary
"B are consistent with this bound.
@ Some other lattice results gives a lower bound
— need to understand the systematics in
these studies. Ultimately all estimates will agree in the continuum limit!

6 Fodor, Katz, 2004 @
Datta et al., 2016 ©
5 D'Elia et al., 2016, rf A
this work: lower bound for rf Bl +
estimator r§
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Characterizing Chemical Freezeout

@ From the statistical fits to the hadron abundances:
o T;=156(2) MeV at /5 = 2.76 TeV ALICE

o Fits to the particle abundances at ALICE included 7, K*, K° from
excited charmed hadrons — could resolve p/7 ratio discrepancy.

@ Why are the estimates so
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Characterizing Chemical Freezeout

@ Non-equilibrium effects for both light and strange baryons considered in
detail through suppression factors ~.

@ Gives even lower Ty = 138(6) MeV.

@ However such model overestimates light nuclei yields by a large factor!
— particle yield in most central collisions consistent with thermal model fits!
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Freezeout and Hadron Resonance Gas model

@ Tr measured at ALICE is at the edge where lattice results deviate from HRG.
@ For T ~ 165 MeV thermodynamic quantities deviate from HRG estimates
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@ Repulsive baryon interactions more important? Excluded volume calculations
included in the standard statistical model increases T for ALICE energies
— Consistent with expected deviations from HRG model
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Beyond HRG
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@ Including Van der Waal's interaction for baryons+non-interacting
mesons—+resonances, new versions of HRG has been studied — significant
deviation from non-interacting HRG.

@ Lattice data can constrain such models strongly! Currently none of these
models are perfect to describe QCD at freezeout.

@ It would be important to resolve this 10 MeV spread in Ty specially for CEP
searches.
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Lattice Input to 7+

@ Before directly comparing data from HIC experiments to lattice one
has to take into account:
e The expansion of the medium
e the finite acceptance cuts in pr
e Unmeasured hadrons like neutrons.

@ Choose observables in which such effects cancel each other
sQP _ R} RX — X&
r = RP 2=

P ) X
Ry, X2

Sayantan Sharma RHIC & AGS Users' Annual Meeting 2017, BNL Slide 20 of 25



Lattice Input to 7+

@ For small g/ T, the freezeout curve:
T="Tro(l- K:S/J,ZB/TE_O) .

; ; . ng(B) _ ps (1B
@ Major uncertainty : pg/ Ty. Instead By = T + O(44

)

@ Performing a Taylor expansion:
T8 (ug) = TO%(0) [1 + cio (RE)’| + O (RE)"

Q
@ Comparing with the lattice data for ¥ %5 = % +assuming thermalization
12
achieved under freezeout conditions:
Tr(pup ~ 0) = 147(2) MeV for RHIC at /s ~ 200 MeV

[ Bielefeld-BNL-CCNU collaboration, 15]
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New diagnostics!

@ Off-diagonal fluctuations are more sensitive to deviation from HRG and
baryon interactions.

o (5> — 5 already rules out a different freezeout T/ for strangeness.

0.16 y T T T .
3 N=6
Ni=8 —@—
0.18 N‘:IZ —A—
ALICE Ni=16 —w—
0.2
Py
0.22
o
3 0 — &
3
0.26 ,
&
0.28 — %
[
03
032 . . . . . . . .
135 140 145 150 155 160 165 170 175 180

T (MeV)

@ % /X3 shows ~ 15% deviation between 155 and 165 MeV. Analysis with
ALICE consistent with Lattice predictions at ~ 155 MeV.
Including ~* — NK will make the ratio lower!

Similar results from RHIC would be interesting!
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From strangeness to charm at freezeout

P(uc,ps, T)

Pm X& — x5

@ Evidence of thermodynamic
importance of yet to be
measured charm baryons
observed at Tr.

@ To interpret experimental
yields it is crucial to
account for hadron
abundances at T correctly.

@ These resonances account
for feed-down corrections.
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What are the charm degrees of freedom

@ These techniques allow to single out charm baryon sector near 7. — studies
conclude that open charm hadrons deconfine at T.. Flavor hierarchy is
disfavored.

@ However charm quarks remain correlated in the medium till about ~ 200
MeV — hints to presence of broad resonances.

’ ] / + KB
pc = pum cosh (N—C) + pB,c=1cosh <w> + pg(T) cosh (b) .

ot
| {Pc/ P N N
s
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20| " |
]
5 ¥ J
i L5 * m
[ r 1
77777777777777777777777777777 B Lo un-corr. hadrons 1
60 150 200 2 L T [Mev]

140 160 180 200 220 240 260 280 300 320 340 140 ‘ |gn ‘ IZ‘SO : 21‘)0 ‘ ﬁ;o ‘ 2,‘1(; : 7(‘,0 ‘ 2;;(,

Sayantan Sharma RHIC & AGS Users' Annual Meeting 2017, BNL Slide 23 of 25



Implications for heavy flavor phenomenology
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Implications for heavy flavor phenomenology

@ Lattice studies now predict
that open charm hadrons

melt at 7. = freezeout L L B L B
temperature for Ds is now 1.6f~ Pr=15GeV 1
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Implications for heavy flavor phenomenology

@ Lattice studies now predict
that open charm hadrons
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Implications for heavy flavor phenomenology

@ Lattice studies now predict
that open charm hadrons
melt at T, = freezeout
temperature for D; is now
well known!

@ Additional baryons may
contribute to hadronic
interactions near the
freezeout — can it explain
the Rap for open-charm
mesons?

@ Our study supports the
picture of a broad D-meson
resonance immediately
beyond T, as predicted
from T-Matrix approach.
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Conclusions and Outlook

ng=0, ng/ng=0.4
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@ Preparing for BES-1I runs: LQCD EoS important for hydrodynamic modeling
of QGP. For 15/ T < 2 — /sy, > 11 GeV already under control with x¢.
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Conclusions and Outlook

ng=0, ng/ng=0.4

0.5

0.4

0.3

[P(T.ug)-P(T.O)IT*

0.2

o1 ﬁ___

0
140 160 180 200 220 240 260 280
T [MeV]

@ Preparing for BES-1I runs: LQCD EoS important for hydrodynamic modeling
of QGP. For 15/ T < 2 — /sy, > 11 GeV already under control with \&.

@ Analysis of 5 important to estimate the errors on the EoS measured with
the sixth order cumulants and going towards pg/ T = 3.
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Conclusions and Outlook

ng=0, ng/ng=0.4
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@ Preparing for BES-1I runs: LQCD EoS important for hydrodynamic modeling
of QGP. For 15/ T < 2 — /sy, > 11 GeV already under control with \&.

@ Analysis of 5 important to estimate the errors on the EoS measured with
the sixth order cumulants and going towards pg/ T = 3.

@ Higher order cumulants will also help in bracketing the possible CEP. Most
LQCD calculations suggest 15( /T >2.
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Conclusions and Outlook

ng=0, ng/ng=0.4 Hg/T=2.5
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@ Preparing for BES-1I runs: LQCD EoS important for hydrodynamic modeling
of QGP. For 15/ T < 2 — /sy, > 11 GeV already under control with \&.

@ Analysis of 5 important to estimate the errors on the EoS measured with
the sixth order cumulants and going towards pg/ T = 3.

@ Higher order cumulants will also help in bracketing the possible CEP. Most
LQCD calculations suggest 15( /T >2.

@ Beyond bulk thermodynamics, lattice results are now providing important
insights for heavy-ion phenomenology.
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